Regulation of calcium channels and exocytosis in mouse adrenal chromaffin cells by prostaglandin EP3 receptors.

نویسندگان

  • Mark L Jewell
  • Richard M Breyer
  • Kevin P M Currie
چکیده

Prostaglandin (PG) E(2) controls numerous physiological functions through a family of cognate G protein-coupled receptors (EP1-EP4). Targeting specific EP receptors might be therapeutically useful and reduce side effects associated with nonsteroidal anti-inflammatory drugs and selective cyclooxygenase-2 inhibitors that block prostanoid synthesis. Systemic immune challenge and inflammatory cytokines have been shown to increase expression of the synthetic enzymes for PGE(2) in the adrenal gland. Catecholamines and other hormones, released from adrenal chromaffin cells in response to Ca(2+) influx through voltage-gated Ca(2+) channels, play central roles in homeostatic function and the coordinated stress response. However, long-term elevation of circulating catecholamines contributes to the pathogenesis of hypertension and heart failure. Here, we investigated the EP receptor(s) and cellular mechanisms by which PGE(2) might modulate chromaffin cell function. PGE(2) did not alter resting intracellular [Ca(2+)] or the peak amplitude of nicotinic acetylcholine receptor currents, but it did inhibit Ca(V)2 voltage-gated Ca(2+) channel currents (I(Ca)). This inhibition was voltage-dependent and mediated by pertussis toxin-sensitive G proteins, consistent with a direct Gβγ subunit-mediated mechanism common to other G(i/o)-coupled receptors. mRNA for all four EP receptors was detected, but using selective pharmacological tools and EP receptor knockout mice, we demonstrated that EP3 receptors mediate the inhibition of I(Ca). Finally, changes in membrane capacitance showed that Ca(2+)-dependent exocytosis was reduced in parallel with I(Ca). To our knowledge, this is the first study of EP receptor signaling in mouse chromaffin cells and identifies a molecular mechanism for paracrine regulation of neuroendocrine function by PGE(2).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium signaling and exocytosis in adrenal chromaffin cells.

At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca2+ concentration ([Ca2+]c) depends on at least four efficient regulatory systems: 1) plasmalemmal calcium channels, 2) endoplasmic reticulum, 3) mitochondria, and 4) chromaffin vesicles. Different mammalian species express different levels of the L, N, P/Q, and R subtypes of high-voltage-activated calcium channels...

متن کامل

CaV1.3 as pacemaker channels in adrenal chromaffin cells: specific role on exo- and endocytosis?

Voltage-gated L-type calcium channels (LTCCs) are expressed in adrenal chromaffin cells. Besides shaping the action potential (AP), LTCCs are involved in the excitation-secretion coupling controlling catecholamine release and in Ca (2+) -dependent vesicle retrieval. Of the two LTCCs expressed in chromaffin cells (CaV1.2 and CaV1.3), CaV1.3 possesses the prerequisites for pacemaking spontaneousl...

متن کامل

Suppression of Ca2+ syntillas increases spontaneous exocytosis in mouse adrenal chromaffin cells

A central concept in the physiology of neurosecretion is that a rise in cytosolic [Ca(2+)] in the vicinity of plasmalemmal Ca(2+) channels due to Ca(2+) influx elicits exocytosis. Here, we examine the effect on spontaneous exocytosis of a rise in focal cytosolic [Ca(2+)] in the vicinity of ryanodine receptors (RYRs) due to release from internal stores in the form of Ca(2+) syntillas. Ca(2+) syn...

متن کامل

Enhancement of asynchronous and train-evoked exocytosis in bovine adrenal chromaffin cells infected with a replication deficient adenovirus.

Bovine adrenal chromaffin cells share many characteristics with neurons and are often used as a simple model system to study ion channels and neurotransmitter release. We infected bovine adrenal chromaffin cells with a replication deficient adenovirus that induces expression of the common reporters beta-galactosidase and Green Fluorescent Protein via a bicistronic sequence. In perforated-patch ...

متن کامل

G protein Subunits Modulate the Number and Nature of Exocytotic Fusion Events in Adrenal Chromaffin Cells Independent of Calcium Entry

Yoon, EJ, Hamm HE, Currie KP. G protein subunits modulate the number and nature of exocytotic fusion events in adrenal chromaffin cells independent of calcium entry. J Neurophysiol 100: 2929–2939, 2008. First published September 24, 2008; doi:10.1152/jn.90839.2008. G-protein-coupled receptors (GPCR) play important roles in controlling neurotransmitter and hormone release. Inhibition of voltage-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular pharmacology

دوره 79 6  شماره 

صفحات  -

تاریخ انتشار 2011